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About this Report.

The theory of skew lattices - a new chapter (or a new
paragraph) of abstract algebra - is discussed here in such a
manner, that 1) the greater part of known important results
concerning this field is covered here; 2) no knowledge of the
reader concerning already published parts of the theory is
needed in order to understand what is said here.

Many of the details discussed here are already published in
articles of the author, partly together with E. Witt and W.Bége.
But only in this report the systematical trend of the new
mathematical tkeory is clearly to be seen - so that the details

find their appropriate frame. At the same time many proofs could
be simplified considerably after the connections of the whole
matter have been stepwise better understood - many details of

the results, originally found by highly complicated considerations,
at last could be proved in a very short and simple manner,

This process of concentration in the development of the theory
allowed also a strong reduction of the length of this presentation
of the theory. Additionally this length has been limited by
omitting much material which to discuss here would have lead
to far. In my mentioned papers as well as in unpublished
manuscripts many further details are contained which till now
did not allow to discern their systematical significance -
these many still isolated statements may be reserved for further
study. But also to evaluate and use the beautiful ideas, concerning
our topic, developed by S. Matsushita, is a task not yet

accomplished.

Naturally a considerable part of the theorems presented in this
report here are new ones, not yet published anywhsme. Several
meaningful contributions to the theory made by W. Boge, to whom I
am very much indebted indeed, could be included here.

Especially lemma1i> and lemma {7 given by Bige, show how and why
the new theory of skew lattices must be acknowledged as a necessary
and unavoidable part of mathematical research.
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CHAPTER I. THE CONCEPT OF SKEW LATTICES

§ 1. The mathematical theory of skew lattices - a new branch of
abstract algebra - is a generalisation of the well known theory of
lattices. Taking instead of the two commutative operations of the
lattice theory two operations which must not be commutative, this new
theory deviates from the usual lattice theory in a similar manner as the
general theory of groups deviates from the theory of abelian groups:

The theory of skew lattices is more complicated and more difficult, but
also much rich and more interesting than the theory of lattices.
’ﬁc [

Groups as well as lattices occur in almost every chapter of mathes
matics, and their theory therefore is an indispensable tool of nearly
all branches of mathematics, Skew lattices are not so common - examples
of these . ust be detected or constructed instead of being seen at once
in many mathematical problems. But great varieties of skew lattices
do actually exist, and especially many of these arise from the study ;
of lattices. Therefore the theory of skew lattices is not only a i
generalisation of the theory of lattices but to a certain extent also

a part of this theory. ,

Close connections exist between the theory of skew lattices and
the theory of semi groups. Especially the mathematical theory of those
semigroups which contain only idempotent elements, is an essential
part of the theory of skew lattices. But also other types of semi groups
ocour in the frame of the theory of skew lattices.

Definition: A set of elements a, b, .eo is a skew lattice, if
from each ordered pair of elements a, b two compositions of new
elements ab and b, a can be made by operations A,V fulfilling
the following axionms:

(1)(A)

(a,b) c = a,(b,c),

(a,),c = a (b,c);

(2)(B) (a,b) ,a = a (ba)=a,
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Therefore those skew lattices which are commutative with respect to
each one of the two operations A, v are the common lattices.

Instead of the signs ,,v we use often the signs .,+ of multi=
plication and addition.

As a consequence of (2) - even without using the associativity
(1) - we get

(3) a8 al=a.
All elements of any skew lattice are multiplicative and additive
idempotents,

Therefore a skew lattice W is a seai group of idempotents with
respect to addition and to multiplication. We shall see later that
every semigroup of idempotents does occur as the multiplicative or
additional semigroup of certain skew lattices.

Principle of duality: The axioms (1),(2) remain invariant if ome 1)
perautes the operations A v 2) reads every line froa behind.

Definition: The skew lattice W is a skew lattice with orthogonas
1ity, if there exists to each element a an element a so that the
following axioms are fulfilled:

(4) f as=a,
L Ty

We have then from (2):

(5) : a,8,C=a.

Lemma 1: If in a (multiplicative) semi group E of idempotents an
involutory relation a=y a fulfilling (5) exists, then the elements
of BE form a skew lattice, if the second operation (addition) is
defined by the second line of (4).

The possibility of a non commutative generalisation of the theory
of skew lattices has been emphasized at first by F. Klein-Barmen, who
studied in this connection the free semi group of idempotents with
two generating elements. A Systematical study of skew lattices has
been started by the author of this report, partly ia collaboratioa
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with E, Witt and W, Boge who made important comtributions to this
enterprise. Independently of this author S. Matsushita studied the
non commutative generalisation of lattices. The following is a
complete list of the present literature of this topic:

P.
1)

2)
3)

4)
5)
6)
7)
8)
9)
10)
1)
12)
13)
%)
15)
16)
17)
18)
19)

Jordan:
ber nichtkommutative Verbinde
Arch, Math. 1,56 (1949)
Zur Quanten-Logik. Arch. Math. 2, 166 (1949/50)
Zum Dedekindschen Axiom in der Theorie der Verbande
Math., Sem. Hamburg 16, 71 (1949)
Algebraische Betrachtungen zur Theorie des Wirkungsquantums uand
der Elementarliinge. Math. Sem. Hamburg 18, 99, (1952)
Zur Theorie der nichtkommutativen Verbande
Akad. Main 1952, S. 61
Bericht iiber die nichtkommutativen Verbinde.
Festaschrift fiir B. Kraft. 1954. 8. 551.
Beitrige zur Theorie der Schriigverbinde
Akad. Mainz 1956, S. 29
iloer distributive Schrigverbinde
Akad. Mainz 1958, S. 229
Quantenlogik und das kommutative Gesetz
Sympos. Axiom. Method (1960), 365
ber nichtkommutative Verbande
Celebra ione di Archimede del XX. Secolo (in print).
Uber distributiv-modulare Schriagverbinde
Akad.Mainz (in print).
P. Jordan u. E. Witt, Zur Theorie der Schragverbiande.
Akad. Mainz 1953, S. 225.
P, Jordan u. W, Boge, Zur Theorie der Schragverbinde II.
Akad. Mainz 1954, 8. 79
F. Klein-Barmen, Uber eine weitere Verallgemeinerung des Verbands=
begriffes. Math. ZS. 46, 472 (1940)
F. Klein-Barmen, Ordoid, Balbvorband und ordoide Semigruppe
Math. Annalen 135, 142 (1958)
S. Matsushita, Lattices non commutatifs.
C.R. 1953, 8. 1526 (1953)
S, Matsushita, Ideal in non-commutative lattices.
Proc. Japan Acad. 34, 407, (1958) .
S. Matsushita, Zur Theorie der nichtkommutativen Verbinde I.
Math. Annalen 137,1 (1959) r
I.A., Green and D. Rees, On semi groups in which x = x.

Proc. Camb. Phil. Soc. 48, 35 (1952).

"
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CHAPTER 1II, SEMI GROUPS OF IDEMPOTENTS

§ 2. Definition: A semigroup of idempotents may be called a
half skew lattice HSL.

In the following we write the half skew lattices

semi half groups, denoting the product of x and
But the reader may please take in mind:

by xy

as multiplicative
y by x.y or

If later we apply

the results of our discussion in this chapter to skew lattices,
we shall interpret xy

Special classes of HSL are defined by additional axioms. We mention

as x y in the case of the L-HSL 1in any w,

&  y X in the case of the ([ -HSL inany W,

the following examples of such axioms defining several important

Classes:

(6)
(?7)
(?7,1)
(8)
(9)
(10)
(11)
(12)
(13)

(14)
(15)

Commutativity

ab = ba ;
"Hal fnest':

ab = a
"Antihalfnest":

ab = b ,
"Superflat HSL":

abc = acd ;
"Flat HSL'":
aba = adb ;
Without special names:
aba = a ;
abec = ac
abac = abc ;
caba = cba ;
abecd = acbd
abaca = abca .

Obviously (8) is a weaker consequence as well of (6) as of (7);
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and (9) a wesker consequence of (8)., The axioms (10) and (11) are ~

. ‘,<‘,._

equivalent; for as consequence of (10) we get:
(16) abc = ab(ac)bc = aba.cbc = ac,
The axioms (12), (13) and (15) too are consequences of (14),

The axiom (7,1) has a totally different meaning from (7) in the frame
of the theory of skew lattices - owing to what has bsen said above
about the interpretation of xy as x,y or ¥ox - though in

o S

the frame of a theory of semi groups of idempotents (7) and (7,1) are
entirely symmetrical.

Fulfilment of the equation

(17) ab = &

by two special elements a,b may be called an inclusion . In the case
a“b = a we say that the element a. is included in b ; in the

case bva s & we say that b is included in a, In both cases

this inclusion is transitive in consequence of (1), and reflexive in

‘ consequence of (2). '

i The same remarks are to be made about another inclusion, defined by
(18) ba = a .
We call the case (17) weak inclusion, and (18) strong inclusion .

In any Skew lattice the halfnests are the equivalence classes
of weak inclusion; the antihalfnests are the equivalence classes of

ptrog‘ inclusion.

. Lemma 4: In any HSL the following three properties are equivalent:

o

s

A) There exists no antihalfnest with more than one element;

* B) weak inclusion is a conseguence of strong inclusion;

C) axiom (9) holds.
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Proof: From C) we have B) that is ab = a as consequence of

ba = a. From B) we have A), that is a = b as consequence of

ba=a and ab = b, From B) we have also C): bDas a =) ab = a
gives xyx = xy in the case a = xy,b = x . From A) we get C) :

ab=b ,basa-) anbd gives xyx = xy in the case ny,
ﬂixyx.

Lemma 5: In any flat HSL the halfnests are a system of congruence

classes.

Proof: If a,a' is a halfnest, then in the flat case also the
pairs of elements ab,a'd and ca,ca’ are halfnests. For we have

aba'b = aa'ba'd = aa'b = ad and caca' = caa'ca' = caa' = ca.

Lemma 6: The commutative HSL are those in which weak and stre

inclusions coincide.

Proof: From lemma 4 and its proof we see: If weak inclusion is a
consequence of strong inclusion, then we have aba = ab. If strong
inclusion is a consequence of weak inclusion, we have sba = ba, -~

Froa two HSL's Ho and H1 with elements ‘a;bo coe

*
and a, b1 ese we can derive a new HSL called by definition the
L L
chain composition (H° H1) of B and H, Its elements are those
[ ] L
of Ho together with those of 81 so that Ho and H1 are
’

Subsystems of (!I° H1); the composition of any element a of H
. .

with any element of BH being given by

1

(19) as, =aa =8
Definition: An axiom characterising a certain class of HSL's
is called conservative if its validity for H° and H1 causes
also its validity for the chain composition (H° B,).
?
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Leama 7: The axioms (6), (9), (15) are conservative ones.

$ 3. We now proseed to determine for some of the classes of HSL

defined by the additional axioms above the free system with n generating

elenments B9 B3y coe y B0

1) In the case of a halfnest (or antihalfnest) the generating elements
a are the only ones.

2) In the case of axiomd (11) each element of the free system may be
written as

(20) St %N
with
(21) U .hJ = l,kd.

If we now take na elements a1 and define their composition
by (21), then we see, that this definition fulfils associativity,
idempotency = , and the additional axiom (11). Therefore

okl 'kl * fa
these are n different elements of the free system.

3) In the case of axiom (8) - superflat HSL - each element can be
written as

(22) oA a, ceehy

with = different index values ko’ k1, ...k- f. n.
Let us use the symbol

(23) aw (ko' K),

where K is the set of values ko’ k1,'o. k-.
€omposition ist obviously given by

(24) aa' = (k_, K,K').

Taking now (24) as definition of the composition of symbols (23), we
see that this composition gives a HSL and fulfils the additional
axiom (8). Therefore the
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(25 n=1

U (n) = n2

different symbols (23) are indeed U(n) different elements of
the free system,

4) In the case of flat HSL's, axiom (9), the general element
again can be written as (22); we now use the notation

(26) as (kok.‘oo. k.);
the composition is defined by ‘
(27) an' = (k kqjeee k klkieos k1)) t

with the additional remark that all those kz'- are to be omitted
afterwards which equal any of the numbers k..

Taking again this as definmition of the composition of symbols (26),
we get a HSL, fulfilling (9), and therefore the

1

(28) G(n) = a! =0 E!

different syabols (26) are different elements of the free system.
5) 1In the case of axiom (15) let us consider the elements

(29) LI VR VRIS WY &%, |
whre all ko.k.‘.... ’ k. are different, and the ho' h1,..., h.

are any permutation of the kr' We denote (29) by the symbol &&B
(30) a = (kkjeeo K T hohyeee b);

we have then especially

(31) = (k|k).

From (15) we get the following composition rule: We have to write
down '
(32) aa' = (k eoo KKk .00 k| Byeoeh hleoehl,),
and afterwards to omit the common index values of a and a' among

the k‘_ and also among the h:j .

To prove this rule we write, using (15);
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aa' = aa'as’
(33)
= lko... 'k; coo .hc 0o ‘hg cee o
so that (32) in justified; and the rest in the formulatiom of our
rule comes too from (15).

Again taking now the symbols (31) as elements, and our rule as defini=
tion of their composition, we get a HSL s fulfilling (15). Therefore |
the :

(34) P(n) = n! :i_% (n - m)!
m!

different symbols (31) correspond with the different elements of the
free system. We have P(2) = 6; P(3) = 51,

§ 4. Defimition. A half skew lattice is called an ordered one if it

M fulfils the axiom

(35) ab = a OR D ,

so that each pair a,b of its elements is a sub system.
Therefore each pair a,b of elements im an ordered HSL

must correspond to one of the following four possibilities:

1) a,b form a halfnest;

(36) 2) a,b form an antihalfnest;
3) a is twofold included in b;
4) v is twofold ineluded in a,

There are these four bo-nibilitio- only, because we have for ab
and for ba two possibilities a and Db,

Lemma 8., The ordered HSL's are the chains of halfnests and
antihalfnests.

Proof: Any element x in an ordered HSL cannot belong
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to a halfnest as well as to an nntihalfnolt,ot more than one element.

It x,y form a halfnest, and x,Z an nntihnlfnosté

Xy = zX = X,

(37) yx = y,
Xe = 2,

this together with
(38) Zy = yz = y
would lead to xy = y=x; and (37) together with

2y = yz s 2

(39)
would lead to yx s x = y

We denote now any finite ordered HSL by a symbol as
' »”
H -A(n.l, nZ' LN N .nr)

(40) ()
- (n(1)' A(a)' cecseoce 'Y H )g

meaning a chain compositionycontaining a halfnest of n, elenents

(all its elements are weakly and strongly imcluded in all other elements

of H), an antihalfnest of =n elements, and so on.

2

For example
(41) Ha=,(3,1)

is a flat HSL with 4 elements, which may be denoted here as
v, 1, with the following compositions:

. O,x = 0,
ullLlx = i,

v,X =V,

(42)

1‘x = X,

With x we are denoting here the general element of H“.

This example may be used to show how lemms 1 works., We define

0, u,



in B“ an involutional correspondence x—x by:

=1, 1 =0,

ol

(43)

=f, vsv,

The condition (5) obviously is fulfilled; for in each case at least
one of the elements a,a belongs to the elements ¢ with the
property Z.X = 2. Therefore we got a skew lattice '# (with
orthogonality):

o,x =0 %1 =1
ow,x =i x,u= i
(44)

V. X = V x’v =V
1Ax = X x, 0= x ,

Cc P ER IITI.BASIC LA S OF

R E R IR SIS EEEE R E RS I EIEE IS E SIS SR ERXaER
SKE LATTICES
ESRSZITTBIINRTIIRISSIZSoD

§5. Let W Dbe a set of elements who form in two ways a semi
group of idempotents; one of these compositions being demoted by , ,
the other one by ., .

Under what conditions will this system be a skew lattice, fulfilling (2)?

At first we see from (2) that in every skew lattice strong
multiplicative (additive) inclusion of the element a in b has as.
its consequence weak additive (multiplicative) inclusion of a in b
This may be expresaed by the graphical scheme:

strong inclusion: (—;‘a = a b,a=b .
(45) weak inclusion ab = b ab = a 4
(46) mn
v ¥ -
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Only one of these two statements needs a proof: From

(47) (b,a),b = b

we see, that b,a=a has the consequence
ab = b, The other statement is dual to this one.

But (46) gives not only a necessary, but also a sufficient condition
for W Dbeing a skew lattice. For the element b,a is multiplicatively
strongly inocluded in b ; therefore according to (46) it must also be
additively weakly included in b, as expressed by (47).

Lemma 9: Any set W__of elements forming a multiplicative (operation A )
and at the same time an additive (operationy ) semi group of idempotents
is a skew lattice if and only if each case of strong inclusion is connected
with weak inclusion of the other kind (multiplicative or additive).

Several special cases may be considered:

Lemma 10: If W is a multiplicative (additive) half nest and any
arbitrary additive (multiplicative) HSL, then W is a skew lattice.

Lemma 11: If any skew lattice is a multiplicative (additive) antihalfnest,
then it is amadditive (multiplicatiwe) halfnest.

Definition: A skew lattice being a multiplicative and additive

halfnest is called a nest.
both

Lemma 12: The nests are the equivalence classes of4i§it1plicqtivo and
additive weak inclusion.

both
Lemma 13: Each equivalence class of’iﬁit;plicativo and additive strong

inclusion contains only one element.

This is a consequence of lemma 11,-
The nests are those skew lattices which fulfil the axiom

(48) ab=ba.

With (48) we get from (48) that a,b = a.
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The other axiom

. (49) ab=apb

is valid only in skew lattices with elements nn' and

(50) ‘1),".-(/-' ‘1» .

i For (49) and (2) lead to (10) and therefore to (11) and to (20),

i (21), a special case of (50). The general case of finite akew lattices
| fulfilling (49) can be derived from the free systems (20), (21) by

A congruence relations; and congruence classes in a skew lattice of type
(50) give skew lattices of this same type.

Proof: Let be S = 8y where 14+ j . Then we have from (50):

(51)
.»1,‘& .J"' .
Therefore in the system of congruence classes all .1,«. can be replaced
»*
Obviously the skew lattice (50) is the direct product of a

multiplicative antihalfnest ( and therefore additive halfnest ) i’sk

and an additive antihalfnest dl:

(52) A% xf":\'

i Lemaa 14: The axiom a,b = a,b is fulfilled only by all direct
products of antihalfnests.

J N A Pan® fyen Bt
!
|
{
f

by the corresponding a

Definition: The chain composition (Wo, l.,) of two skew lattices

'o' '1. with elements 8,9 bo.... and L b1,... is that skew lattice
which as a multiplicative and additive HSL is chain compoaition

of the corresponding HSL's in W and W1:

e

e
»
»
"
»

(53) . oA

i Sy e T

= . .
- R L
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That this indeed is again a skew lattice can be seen too from lemma 9.

Lemma 15: Those elements of a skew lattice which are additively weakly

included in a certain element C, form a sub system. - The same

statement holds for those elements which multiplicatively include
weakly ©¢.

Proof: From c,a = C; CAD = C we get not only c,a,b = c,

but also o,(a,b) = c, b (ab) = c,b = c.

Definition: Any set M is called a quasi ordered set, if for

some pairs of ( unequal or equal ) elements of M a relation &

is
for
aed

defined in a reflexive and transitive manner. ( Special case: aaca

each element, but no other relation exists. Other special case:
for each pair a, b in M ).

Lemma 16 (W, Boge): If M is a quasi ordered set, and the elements

of

M are in two ways semigroups - with operations A,V - having

lmetng the following properties:

1) a,bla,
2) a,b = a in all cases ash;
3) a, b2b,
k) ab=b in all cases acb,

then M is a flat skew lattice. - Every flat skew lattice can be

described in this manner.

Proof: I. From 3) we have b aza, therefore from 2): a (b a) = a,

and from 4): ab a = b,a. Dually symmetric to thtn‘atntuonta are

(a,b)ya = a and a,bia = ab. - II. In any flat skew lattice
define acb so that it means twofold (multiplicative and additive)

inclusion of a in b:

(54) x¢y Q{

X,y = X,

X, y=YJ.
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i This indeed is fulfilled by x = a b,y = a; therefore this relation
- (54) indeed has all properties 1),2),3),4).
‘ (The two special cases mentioned above both lesad to a nest).

The connexion with lemma 9 and lemma 4 is this one: &b is '
additively strongly included in a, and therefore has to be
( in the flat case ) twofold weakly included in a.

: From this lemma Boge derived the following example of a flat skew

§ lattice: Let M = {a,b.... } be the set of all reflexive transitive }
! relations C in a set S -.{x.y,...}L Any element a of M !
means that in @& @ certain manner for every pair X,y of elements

of S the relation xey is given or not given. In the former of

these two cases we write xay; in the latter case we write ;:;.

Now we define in M the relation £  Dby:

(55) aeb means xay mp xby for every pair x,y in S,
This is a reflexive and transitive relation.

Secondly we define a,b Dby:

yax
(56) x(a,b)ygmd xay AND { OR

yax AND xby.

Using the Boolean distributive lattice of AND and OR,
denoting AND,OR by .,+, we can write (56) also thus:

(57) x(a,b)y = xay.(yax + yax.xby) .

This is associative.

Proof: We have

, ——
? x(qn(bﬂc))y = xay. (yax + yax.x(b,c)y)

(58)
. 1{ = xay.(yaX + yax. xby. (¥B6X + ybx. xcy)).

At the other hand we get:
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| ] x((a,b) c)y = x(a,b)y. (yZaAHx + y(a,b)x. xcy)

= xay. (yax + yax. xby). (y!nAb?x + y(uAb)x. xcy);

| y{a,b)x = yax. (Xxay + xay.ybx)

l = yax + xay.(Xay + ybX) = yax + xay. ybx;

| . x((a b))y

= xay. (yax + yax.xby.(xay.ybx + y(a,b)x.xcy))
= xay. (yax + yax. xby. (ybx + (xay + ybx).xcy))
= a,bec).

And A has the properties 1),2). For x(aAb)y =p xay according
to (56); and ab = a as soon as  xay =) xby.

Lemma 47 (W, Boge): The reflexive transitive relations a,b,... in

a set of elements XeYgoos form a flat skew lattice if their compositions |
A,v are defined by (56), (57) for A, and dually for VvV .

This lemma 17 is especially interesting because it shows that at
- least the theory of flat skew lattices is an unavotdable part of the
theory of quasi order.

As the last point in this paragraph we consider the ordered skew
lattices, which, by definition, are those which have two ordered HSL's,
so that each pair of elements a,b forms a sub skew lattice.

(h\y HSL of two elements is commutative or a half nest or a antihalfnest.
A skew lattice of two elements therefore is a lattice Vz or a nest

llz or a halfcommutative halfnest (look at (65), §6), or an
antihalfnest).

We discuss here only finite ordered skew lattices. Owing to the
fact that each set of elements of an ordered skew lattice is a sud

© e
i

skew lattice, we can make from the elements a series so that the

-
-
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following statements are correct, using the denotation from (44):

1) In the flat case the symbol

(59) Wa A(n1.n2,.... nr)'v(l1, Byseses n‘)
with
J'(“6"(32“M erpen an - Zn.k = nuamber of elements meems-sspecinily

that min (n1. n1) elements form a nest of elements strongly

included in all other elements, and twofold strongly included in
n - -ax(n1. -1) other elements. Omitting these nin(n1, n1)

elements there remains a skew lattice w of n - min (n1, m1)

elements, namely in the case n, 7n1:

(61) w' = A(n1 - By Doy eeey nr)lv(nz,...,,ns);

'in the case n,,)l1 :

(62) W = ,\(nz,.... nr)‘v(.1 - n1’ ﬂagcoo, .‘);

in the case B, =m :

(63) W' = A(nz,... ’ nr)l V(-Z’...’ ms).

Lemma 18: The symbol (59) with (60) represents in every case a possible
structure

of flat ordered skew lattices; and each such structure corresponds

to a uniquely determined symbol (59).

Proof using lemma 9: In order to be multiplicatively strongly included
in an element y Dbelonging to the multiplicative halfnest (with n:j
elements) denoted by ‘j , and to an additive halfnest denoted by LY
the element x =must belong to any A-halfnest denoted by n, with
1<d; then it belongs to a - halfnest denoted by m with

i
i<h,
=

The general case, allowing also the presence of antihalfnests, can
be described by symbols similar to (59), but with astorica/it some of
the numbers nj, m . Allowing also (superfluous) velues O of these

f?bnxaynévg cRuAL’KAJQZux44§)

numbers, we can write for the general case:

;T
g
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) (6“‘) | A(n," n;' 53, n':.... ’nr)lv(m‘]’m;’."'m').

Lemma 19: The symbol (64) gives an ordered skew lattice if and only

if the elements denoted by any n;' are entirely contained in those

denoted by a certain mh. and vice versa.

‘ § 6. Definition: An axiom, characterising a class of skew lattices,
' is called an HN-axiom, if it is fulfilled in the case of every half
nest( multiplicative or additive).

The axiom (2) is an HN-axiom according to lemma 7¢, An example
t of an axiom which is not an HN-axiom, is the following one, which
' is fulfilled especially if at least one of the operations A,V is
1 commutative:
|
!
]

(a!‘b ) (bAa) = (b,'m)v ('Ab) '

(65) ,
( (a,b),(b,a) = (b,a),(a,b).

Definition: An axiom for skew lattices is called conservative,
if its validity for 'o and w guarantees also its validity

1
for the chain composition (Wo. w.).

The axiom (2) is conservative; the axioms (48) and (49) are not
conservative ones,

Definition: A skew lattice is flat if both its HSL's are flat
according to axiom (9):

a,b,a = ab;
(66) é AA A
L a,b,a = uvb.

Our former statement that (47) is equivalent with the law that

’ strong multiplicative inclusion has weak additive inclusion as its
consequence, can be applied with: Permutation of X,y in x,y;
permutation of x,y in x.y¥; permutation of A ,v , Out of the
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eight statements arising in this manner, only two have been discussed
the following three additional dually
(H), containing each one two equations

in § 5. Now we mention also
symmetric axioms (F), -(C),

which can be interpreted according to those eight statements:

(67) (F)

‘v(ﬂgb) =

(bvn)Au -8 ;

thus: this axiom can be indicated the meaning of

(F)

(68) (c)

this axioam means

(¢)
(69) (m)

this means

(1)

— |

‘l .

s, (ap) =

(b,a),a = a;

(——

.

a(b,a) =

(a,b),a = a;

HH

According to lemma 4 the axiom of a flat skew lattice means

(@)

waruy

From this it is to be seen that (G) for both operations A,V is
a consequence as well of (F) as of (C); for in all skew lattices

(46) is valid.

Lemma 20: A skew lattice fulfilling one of the axioms (C), (F) is

a flat one.,

Combination of (H) with (2) gives

1

1

<+

B

we see, that in the flat case (H) guaranteos commutativity,

The axiom (C) is fulfilled already if
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{ ' (70) a,(ap) = (b,a),a
‘ is valid - : we then have the consequence (b,e),a = aA[KbAn)va]- 8.
But the axiom
| (71) - a(bs0) = (a,b),a

is weaker than (69). This axiom (69) obviously is fulfilled in the
case (49) and in the commutative case. Other examples are not yet

known.

All axioms written down above in this paragraph, (65) till (71),
are conservativs ones; but among them only (71) is an HN-axiom.

A further example of a conservative HN-axiom is this:
a fa,b) = a,(ab),

(72)
(v, a),a = (b a),a,

; valid especially in the case that (C) and (F) both are fulfilled,

From lemma 5 we get now
Lemma 21: In a skew lattice fulfilling the axiom (C) the nests are
congruence classes for both operations A, v; these congruence classes

form a lattice.

Proof: In lemma 5 the HSL of the halfnests as congruence classes
is comutative because ab and Dba in the flat case (look at
lemma 4) belong to the same halfnest.

§ 7. In this paragraph, evalueting something more about the
ordered skew lattices, we often use the signs oyt instead of A,v .,

Definition: As the tolerant distributive law we denote the following
axiom, consisting of two dually symmetric equations:

a,(b,c) = a,(b, [ac]),
(73) (D))

Sy V-
3

(c,b),a = ([c a],b) a.
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This notation is reasonable because in the commutative case each
line of (73) gives the usual distributive law.
For from

(74) a_(bc) = a (b fac])
we get (putting a.b instead of b) the usual modular law:
(75) o ([aple) = [ap] [a.c],
and again using (74), we get the distributive law.
The axiom (73) is a conservative HN-axiom.

Definition: The following axiom is called the modular law:

(76) (M) [(ap) el (a,0) = (a,0), [catap)) .

Lemma 22: This modular law can be formulated also in the following
manner: If two elements X,y fulfill the relations

| X,y = x,
(77) {
xy=y

(meaning that x is twofold weakly included in y ), them for

every element c it is: _
(78) (x,e)ay = x (c,y).

Proof: Inserting for x,y in (78) the expressions (77), we trans=
form (78) into the relation (76), so that the property of modular skew
lattices, formulated in (77),(78), indeed is a consequence of (76).

And the elements a,b = x, ab =y fulfil (?7?7), so that (76)
is a consequence of the law formulated in (?77), (78).

The modular axiom (76) is a dually symmetrical conservative
HN-axiom. The axiom (71) is a special case of (76).

Lemma 23: Any ordered skew lattics fulfils the tolerant distributive
axiom (73) and the modular axiom (76).
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Proof: The relation a(b+c)a(b+ac) is fulfilled in the case
ac = ¢, In the other case ac = a we have

(79) a(bsc) = ac(bsc) = ac = a = a(b+a).

If xy=x, x+y = y, then in the case x+¢ = x (and therefore
ox = X) we get:

{ (x+¢c)y = xy = x;

X4+CYy = X4+CXYy = X+CX = X+C = X,

: (80)

: In the other case x + c m ¢ we have to prove cy = x+cy, and
this is valid, if cy = y.

} But if ¢y = ¢, and x+¢cy = x, therefore x = ¢, then
CYy = X = X+CY.

Lesma 24: In an ordered skew lattice the axioms (C) and (F) are
squivalent. They express that the ordered skew lattice is a chain
composition of nests.

Proof: In a chain composition of nests (C) and (F) are fulfillod,
because they are conservative axioms, and valid in a nest. According
to (F) two elements belonging to the same multiplicative halfnest
cannot belong to @ifferent additional halfnests, so that one of
these elements is udditiv.ly strongly included in the other one.
According to lemma () has the same meaning in ordered skew lattices.

Lemma 25: Any HN-axiom (p(a,b) = (a,b) yalid also in V,,
the lattice with two elements, is fulfilled in every ordered lattice.

With P (a,b) we denote here any well defined element of the
free skew lattice with two generating elements a,be.

Proof: In an ordered skew lattice any pair of elements is a
- subsystem, and therefore v‘2 or a halfnest.
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CHAPTER 1V, DISTRIBUTIVE AND MODULAR

| SKEW LATTICES ;
« p 1

§ 8. Naturally the tolerant distributive law (73) and the modular
' . law (76) are not the only possibilities to generalise - in a sisple
aanner - for the ntmcommutative case the distributive and the modular
axiom of the commutative theory. Other possibilities will be studied
in the next paragraphs.

Before doing so we at firat mention:

Lemma 26: In any modular lattice the elements which are twofold

weakly included in the element y form a sudb system.

This lemma too - similar to lemmas 22,23 - shows that (76) is a |
singularly simple and meaningful axiom.

Proof;qa77) and therefore (78) is fulfilled, and if =z y = s, ?
i we have (x,z),y = x,z. At the other hand x,z.y = x,z : the

. elements x z and x,z are multiplicativela weakly included

in y « The rest of lemma 26 is already expressed in lemma 15.

We formulate now another distributive law:

a,(bc) = (ab) (ac)
(81) (oY) A AT

(c,b) ,a = (¢ a),(ba).

Obviously (73) is a consequence of (81).

Definition: A skew lattice fulfilling the axioms (73) and (81) may
- be called a distributive-modular one.

The rest of this paragraph will entirely be devoted to the task to
determine and to discuss the free flat distributive - modular skew
lattice with two generating elements a,b.
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L Lemma 27: The free flat distributive-modular skew lattice with
| two generatigy elements a,b has 18 elements. It is superflat and
doubly distributive,

The term "doubly distributive" means validity of (81) and also of:

(ab),c = (a,c), (b c)
(82) (D,) v v
°v(‘Ab) = (c,a), (c,b).
Obviously (73) is a consequence of (82) too. But (81) as well as
(82) is sk stronger than (73), for (81), (82) are not conservative
axioms, But they both are HN = axioms.

The 18 elements of the skew lattice from lemma 27 - it may be
denoted in the following as '18 - are those of table 1.

| TABLE 1
n1 - A v1 = b

; lla = ab 72 = ba

i ug ® b+ a vy w4 b

f “ = ba + a v, = 8b + b

y

! “j;' a + ab '5 = b + ba

g ug = b + ab '6 = & + ba

i u, = ba + ab P ab + da

{ ug = & 4 b+ ad vg= a+b s+ ba

i

i u9 = a + ba + ab v9 = ab + b + ba

Proof: From the generating elements a,b we get at first the
(superflat!) free flat HSL with elements a,b,ab,ba. These
four elements generate an additive HSL whioch we show to be

superflat. It possesses the 18 elements of table 1.

s v e

We shall prove:
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(83) a+ab+bs=aash
(84) a+bsbambas+a+ bag

from (83) we have (by substitution of b by ba)
(85) a+ab+baea+ baj
from (84) we get, substituting ab instead of a:
(86) b4+ ab+bamabs+b + ba

From (76)(M) we have
(87) (a + b)a = a + ba;
from (81), second line:

(88) (a + b)b = ab + b.

Therefore:

(89)

a+bx=f(a+b)a+b)s(a+ba+ (a+ b

L_ = a +ba+ab+b=a+ ab+ b;

now (83) is proved to be correct.

Then from (81):
(90) a+b+bama+bd+a)
from (76): .
(91) a+b(db+a)m(asbldbsa)mf@sb)b+ (as+bla;
therefore from (87), (88):
(92) a+besbamab +b+a+gba=b+ a+ gbay
now (84) is proved to be correct.

Therefore the gdditivo HSL _generated by a, b, ab, ba indeed
is superflat:

We have to prove the relation x + y + z =y + X + 2 only for the
case of three different elements;
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if =z a=b, only x,y % ba is to be looked for, and (83)
answers this. If 2z = ba, the three cases cleared by (84), (85),
(86) are to be considered. Therefore the elements of table 1 form
an additive (superflat)  HSL.

Now we shall show that they form also a multiplicative HSL:
It is sufficient, to show that each one of them gives another element
of table 1 when multiplied with the element a from the right side.

The cases ug, V5 are cleared by (87), (88); the modular law

clears all those cases where the sum .k or vk has as its

first member a or ab. The case v5 is cleared by v5 =z bv3;
and at last we get:

u = (b + a)d ; u, = (b + a)ab;
(93) J 6 7

2_ uca = (b + a) ba = u, = u,a.

Here the dual relation to (84) has been used. RE S WL T :

All elements of the skew lattice looked for are contained in table 1,
It can also easily be seen now that both lines of the distributive
law (82) are fulfilled.

In order to prove now that all these 18 polynomials in table 1 are
different elements in our free system, we have to prove that they form
indeed a flat distributive-modular skew lattice, After this proof, it
is certain - in consequence of dual symmetry - that also the multiplica=
tive HSL of these 18 elements is superflat.

To perform this last step of our proof we make use of the skew
lattice W,  described im (44). This skew lattice fulfils (76)
according to lemma 23; and (81) obviously too. Now we construct the
direct product of seven direct factors Wu; and we take from this

direct product the following two elements:

(94) J a = (ujuouliol),
1‘ b = (v{Ouluj10).
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Showing that these elements a,b generate 18 different |
elements, we perform the rest of our proef. We get these 18 elements 1
by calculating the 18 polynomials of table 1 resulting from u, = a,

“ws®- b according to (+%4); the results are summarized in table 2,

TABLE 2.
u, (ufuou109) ) v, (viou1u 110)
u, = (ujuOuulod) v, = (v|ouuu|00)
ug (ujuuut|1Y) vy (v|uutuf11)
uy, (ujuuu1|oy) A (v]uutu {10)
ug (uluouul0)) vs (v |Ouuu |10)
ug (u|uuuu|10) vs (v|uauu{o1)
u, (ujuuuujoo) \ (v|uuuu {00)
ug (uluuuu |14) va (v luuuu (11)
ug (uj uuuu |04 ! 5 (vjuuuu|10)

Lemma 28: The skew lattice w18 of Lemma 27 can be represented

by (94) as a sub system of the direct product of seven direct factors
'“-
Apart from helping to prove lemma 27, the representation (94) '

leads to further valuable information about the skew lattice W18.

1) Introducing as a further additional axiom that one formulated in
(65), we get in W,o  the congruences

(95) ug ® Vi ug = Vgi % u, £ Voj ug = Vge

They arise from table 2 by introducing u = v according to (65).
Therefore:

Lemma 29: The free flat halfcommutative distributive-modular skew
lattice with two;goneratigsﬁelementa a,b has 14 elements, It can

be represented by

(96) am (u0u1'01); b= (0u1u|10)



-29 -

as a sub system of the direct product of six direct factors ..

2) Introducing additionally the axiom (68)(C) - according to lemma

24 the axiom (67)(F) would lead to the same result - we have to consider
that (C) is valid in nests and in lattices, but not in a halfcommutative
halfnest. Therefore in table 2 we must omit the letters between the
strokes in order to get the skew lattice of the congruence classes

in W,g corresponding to (C):
(97) a= (ujo1); b= (vi10).

Lemma 30: The free system with two generating elements among the
distributive-modular skew lattices fulfilling (C) is the direct product

of two direct factors V, and one direct factor N, ( = nest

with two elements).

3) 1Introducing the "supermodular"” axiom

(98) x (c,y) = (x,c)y

in W, - the modular axiom (M) is a weaker consequence of (98) -

into W18 we have to omit from (94) the two direct factors Vz,
because V, does not fulfil (98). But (98) is an HN-axiom. Therefore
we get in '18 from (98) the following congruence classes:

{ u, = (ujuoul) [ v, = (viOutu)
na,gu Vagv
= (uiuOuu) = (v|Ouuu)
(99) I, vy,
a (uluuu1) s (v[fuulu)
u6 l,u7 L u8 L u9 '6 V7 L ] 78 = V9
s (ujuuuu) a (viuuuu)

Lemma 31: The free flat supermodular diatributive skew lattice with
two generating elements a=u, b= u, has 8 elements, It fulfils
every HN-axiom ?(.,b,c’ooc) = 'y‘("b'cgooo)o
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Y
Proof: This W8 is a sub system of éirect product of halfnests.,

l, Immediately from lemma 27 and lemma 28, together with lemma 25, we get:

Lemma 32: All those HN-axionms j(a,b) = ~V(a,b) which ‘are

valid also in Va& are fulfilled in all distributive-modular skew
lattices.

§ 9. We discuss now the special ordered skew lattice W, from (44),
This W“ and the direct products of direct factors W, fulfil

a series of meanigful axioms. These we shall summarize ( as far as they

are known) and then discuss their connection or indspendencies,

0) W, is flat.

1)  Every HN-axiom g (a,b) = ~(a;b) which also holds in V,
L is valid.

2) The distributive law (D,'), (81) is valid.

; 3)  The modular law (M),(76) is valid.
P 4) A second modular law
l (100) [(avb)Ac]v(bAa) = (avb),\[cv(bAa)]
L N is valid, This is again a dually symmetric HN-axiom, but

[ not conservative.
{ 5) The HN-axiom

b (H *) (b + ¢)(a + c)a = (b + ¢c)a,
' (101) {

a +ca+Ccb=a+ ch

is valid. - Proof: Its second line is fulfilled in l‘* in
: each one of the cases c = and ce 1.
) Obviously (H™) is a weaker consequence of (H), (69).

6) The axiom

x (b + c)a(a + ¢) = (b + c)a,
(102) (¢ )

' ca +a+cb=a+cd

- is valid. - Proof as for (H* ). .- This is a consequence of (C),(68),
and a weaker one: It is not an HN-axiom, but it is valid in
every flat skew lattice which is a halfnest. -(In the following

we use for such a case the denotation HN* -axiom).
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8)

9)
(103)
(104)
(105)
(106)
(107)
(108)

10)

(109)

11)

(110)
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Any sub ‘system generated by three elements bc, ac, ab is
doubly distributive and superflat.

Proof: In W, in the case a =1 and in the case as$ 1

this sub system is'genorated by only two elements,

Any sub system generated by three elements be, ca, ab is
doubly distributive.

Proof: In Wh such a sub system is generated by only two
elements, if one of the elements a, b, ¢ equals 1. In the
other case it is a halfnest.

The following axioms are valid:

(b,¢)y(a, b)) (ac) = (b a),(c,a),(b,e),

(bpa)y (bac)y(anc) = (o &), (byc),(a L),
(bac)y (baa)y (a,c) = (b,a),(aye) A(bye),
(a,b), (bsc)y(a,c) = (b,a), (bye)alc a),
(c,b), (ap) (a,c) = (c,a),(b,a),(bse),
(a,0)y(c,b) (a,c) = (c,8),(b,c) (b.a).

Each one of these six relations is a dually symmetric distributive
law; (106), (108) are HN™ -axioms; the other four ones are

HN-axioms.
The following Hﬁ*.-axiom and the dual one are valid:
cb ¢+ ab + ac = ab + ¢cb + ac.

This is a special case of 7). It has the consequence that (107)
and (108) ars equivalent.

The left hand sides of (103), (104), (105), (106) are equal;
and the corresponding right hand sides are equal. Therefore the
four axioms (103), (104), (105), (106) are equivalent.

We write separately: .

bc + ba + ac = ba + bc + ac;



g T et

- 32 -

this is an HN-axiom, and again a special csase of 7).
And:

(111) bc + ab + ac = ab + bc + ac;
this is an HN*’-axion, and again a special case of 7).

And
(112) bc + ab + ac = bc + ba + ac .
This curious relation is an HN-axiom.

We now give some further remarks about the connection botwo‘n
these axiomatic properties of direct products of direct factors '@’

A firat contribution is given by lemma 32: The properties 0),2),3)
have 1) as consequsnce. We prove now, that 0), 1), 2) lead to 4),

or more precisely:

Lemma 33: The distributive law (D‘) together with the two conservative
HEN-axioms

(a +b) (a+b +ba) =a+ b+ ba;
(113)
(a +b +ba)(a + b)ba = (a + b + ba)ba

leads to the second modular iaw (100).

Proof: From (D1) we have:

(a + b)(c + ba) = (a + b)e + (a + b)ba
(114) - [a + b4+ (a+b)ballc + (as+ b)ba)
= (a + b)[g + b+ bn][& + (a4 b)bg] ;

and then from (113) and (D1):
(a + b)(c + ba)
(115) - [a + b+ bd][c + (a + b)ba]

= (a + b+ ba)c + bam (a + D)c + ba.

By quite a complicated proof the author has shown in his last

_paper about skew lattices:



Lemma 34: Property 7) above is a consequence of the combined axioms

0), 2), 3), 5), 6).

The proof may be omitted here. -

‘-——JHh*li0P00!!t!!&i!I==£i==é=il=ili!llldnlﬁ==!nl:ﬂTt:ﬁnltzzzztitt::fiii
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The property 8) has not yet been studied; it is unknown which axioms
can guarantee its validity.

Under 10), 11) the four axioms (109), (110), (111), (112) and the
dually correspondhng ones are specisl cases of 7), as mentioned
already above. But among these (110) can be derived already from 1),2): 8§

Using our results concerning W18 , We have

bc + ba + ac m b(c + a) + ac = (b + ac)(c + a + ac)
(116)

a(b+ac)(a+c +ac)mbla+c)+ ac=ba+ bc+ ac,
Also the distributive law (103) is a consequence already from 1),2):
bc + ab + ac = bc + a(b + ¢)

(117)
2 (bc + a)(b + ¢c) = (b + a)(c + a)(b + ¢).

The distributive law (107) is a consequence of 0), 1), 2): In a
flat skew lattice (M) gives also
(118) c¢b + a(b + ¢) = (cb + a)(b + ¢),
because cb is twofgld weakly included in b + ¢. Similar as in
(117) we come from (118) by (D1) to (107).

The axiom (112) and the dual one remain as probably independent of

the other ones.

§ 10. The supermodular skew lattice Wg, defined by (99), is an
example of a class of skew lattices which we shall study more closely

in this paragraph.
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Lemma 35: In the supermodular case we have

bc + ba = ba;
(119)

(a +#b)(c +b) = a+ b,
Proof: According to (98) and (2) we have

bc + ba = (bc + b)a = ba.

Lemma 36: In the supermodular case also the second modular axiom
(100) is valid.

Proof: From (119) we get:
(a+b)c + bama+bc + baw as+ ba;

(a + b)(c + ba) = (a + b)(c + bl)a = (a + bda = a + ba.

Lemma 37: In the supermodular case each one of the axioms (D ),
(D1). (DZ) is equivalent to

(120) .{ ab + c = a + c,
a(b + ¢) = ac.

Proof: From (Do) we get now:
a(b + ¢c) = a(b + ac) = a(b + a)c = ac;

therefore (120) is a consequence of (Do). With (119) we get

2 o :
m\h %1) From (120) wn come to (DZ) thus

(a + b)ec = a + bc = ac + bo,

Lemma 38: Any superflat supermodular skew lattice is distributive.

Proof: From (119) we have in the superflat case:

ba + X = bC + ba + x = ba + bc + X = bc + X,

and with a=b:
b + XxX = bCc + X,

Lemma 39: Any distributive supermodular skew lattice fulfils

every HN-axiom ?(a,b,o,...)- ‘l'v(a,b.c,...).
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Proof in the following.

Lemma 40: The skew lattices (studied above) with a,b = a,b are

distributive and supermodular.

For they fulfil (120) and also the defining axiom (98) of supermodular
skew lattices. Generalising this type of skew lattices - analysed in
lemma t4-we can say: Let the skew lattice W1 be a multiplicative halfms
nest, and the skew lattice wa be an additive halfnest. Then the
direct product W1x;Wé is a distributive supermodular skew lattice,

because it fulfils every HN-axiom,

Lemma 41: The free (or free flat, or free superflat) distributive

supermodular skew lattice with n generating elements is a sub
system II”{the direct product of two skew lattices W1, W2 thus

that W1 is a multiplicative, and WZ an additive halfnest,

The additive HSL1 of W1 and the multippicative HSL2 of Wa

is the free (or free flat, or free superflat) HSL of n generating
elements., The sub system U is the set of those elements in W1)(W2

in which the last summand in HSL1 (one of the generating elements)

is the same as the first factor in HSLa.

Proof: The looked for skew lattice W being doubly distributive,
each of its elements is an element of the additive HSL generated
by the elements of the multiplicative HSL generated by the generating
elements Biy 855000 80 But in any such sum only the last term
has to contain more than one factor a - the other ones, according to
(120), can be written as single elements ‘j' Therefore the general
element a of W can be written as a =o' + A, where o’
is an element of the additive HSL generated by the a, and

A an element of the multiplicative HSL generated by the a .
If the first factor of A is aj, then

(121) am o' + A= (' + aj)A,

so that a may also be written as a = A where the last summand
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iﬁ oL is the same generating element ‘3 as the first factor
in A,

The operations A,V then take the form

A+ ABu (ol + )B
(122) i ¢ e

oLA/&B = ol AB.
This proof of lemma 41 gives also the proof of lemma 39.-

Let us now construct according to lemma 41 the not flat generalisation
of '8. '

Lemma 42: The free distributive-supermodular skew lattice with

two generating elements a,b has 18 elements, as given in table 3:

TABLE 3.
8. = & t1=b
s, = ab ta = ba
53 = aba t3 = bab
s“ = + a tu = a + b
.5- + ab t5-a+ba
’6 = b + aba t6 = & + bab
37 = a+b + a t7 =b+a+b
’8 = + b + ab ] t8 = b + a + ba
!
l9 = a + b + aba ] t9 = b + a + bab

From table 3 we come back to W8 by upsetting the following

congruences:
8, = 8 t, =t
(123) 2 e o
% = % b =5

35 = '6 "‘8 2 39 t5 = t6 = t8 = t9 .
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According to lemma 41 the free distributive supermodular skew

lattice with n generators has %@(n)z
is the number of elements in the free HSL with
elements. Therefore we get 18 = 1.62

2

elements, if B (n)

n generating

elements if ns=s2,

In the case ns=3 we should get %.1592 olements.

For free flat or

number of elements:

(124)

superflat skew lattice of this type we get as

2n-2 a=1_ , 2
n.2 , respectively n!(n-1)! ? Y
= 0 °

CHAPTER V. CONSTRUCTION

OF
SKEW LATTICES FROM LATTICES.

§ 11, In any HSL -we write it here as an additive one,

denoting the composition by = a function

fa = a' of the

element a may be defined, having the properties

fa,a = a;
(125)

£(fab) = fa_fb.

Then we get a new HSL with the same elements, but with a

new composition, defined by
(126) asb = fagb.
Proof: From (125), (126) we have

(127) a s = fa a = a;
a(b,c) = (ab)yc.

Lemma 43: The two elements fa and

ffa

form a halfnest

in We
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Therefore in a commutative W we have
(128) ffa = fa.
\ Proof: From (125) we have

ffa = fa _ffa.

————

Lemma 44: Weak y -inclusion of a in b is equivalent
with weak wv-inclusion of fa in fb., Weak J-inclusion
of a in b kas the consequence of weak v-inclusion of

a in b, |
|
Proof: ab = Db means fa b = b, therefore '

£(fa,b) = fb = fa_fb. At the other hand from fb a fa, fb
we get fab=xb. -From ab=b we have fa b = a b = b,

Remark: Sufficient (not necessary) conditions for the second
line of (125) are:

ffa = fa,
(131)

£(a_b) = fa,fb.
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Lemma 45: In the case W=V (= commutative) and (131)
we have

(132) f(a,b) = £(fa,b) = t(fa fb).
Proof: From Lemma {$we have
£(a,b) = £(fa b);

this together with

<
) f(ab) = fa fb = fasb,
!

‘)! f(a_b) = £f(a.b) Sf(f.ﬂb)

33, gives f(a_p) = f(fa b). '
Obviously ffa = fa is a special case of (132). !

Lemma 46: Replacing in a skew lattice W with compositions

denoted by .o the composition by vy according
to (126), with a function fa having the properties (125),

we get a new skew lattice LA possessing the same elementa

as W, but the compositions A Vv .

Proof: Additionally toc the remarks made above we see that
replacing ey by v we loose no case of additive weak !
inclusions (according to lemma 44), and we win no new case of : {
‘ additive strong inclusion: l

fab =a ~>» a,b = a.

Lemma 47: If the o-HSL in W is flat (or ewen superflat),
then the  -HSL in W is also flat (or even superflat).

Proof: From the axiom a _b,a =b,a we get ab.as=
fa_fb,a = fa_fo fa,a = fb fa,a = fb a. From the axiom
ab,c=ba,c weget abc=Dba,.,
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All these facts are valid in dusl symmetry for ~ A instead

of U, v, and we may also replace both A, 0 bY A y V
according to (126)

and

(133) a,b = a Fb

with

(13%) F(a Fb) = Fa Fb;

anl'a = a,

The new skew lattice with A, v may be called W',

Together with W the new W' is flat or even superflat.

Therefore we can by this construction derive from commutative
lattices only superflat skew lattices, even if we make
repeatedly such a replacement.

Lemma 48: If W fulfils the axiom (C), them W' fulfils
(C) if and only if

(135) fFa,a = Ffa a = a.

Proof: From (135) we get with (2) that

(v, a),8 = f(b Fa),a
a (b Fa) fFa_a = f(f(b Fa) Fa),a
= £(f(b. Fa)_(b Fa) Fa) &
= f[(b Fa) Fa],a = fFa a = a.

At the other hand any element & with the property fFad a
would give (Fa,a),a = fFa_a % a.
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Lemma 49; If W fulfils the axioms (C) and (M), then W
too fulfils (M).

Proof: It is sufficient to discuss the case Fa = a, which
means that only replacement of by v is performed. If (M)
is valid in W.. the case x y= x and x,ys= fxy =y
gives:
(136) (xya),y = (fx,a) y = fx_ (a,y) = x (a y).

Now from (C) we have fnna = fa as consequence of fo a = a,
and therefore:

(137) fx.y = fx x,y = fx.x = fx,

Lemma 50: If W fulfils (C) and (M), then the definitions

(138) fa = a.8; Fam=s' a

with two arbitrary constant elements 8,8' fulfils (125) and
(134). Therefore (138) gives then a modular skew lattice W",

Proof: Validity of (134) is to be seen from

(139) F(a  F8) = s, [a (s D))
= (s’ a) (s’ b) = Fa_Fb;

for s' = x is twofold weakly included in s’ b = y. And we
have

(140) afa = a (s a) =a.

Lemma 51: In the case of a distributive lattice W=V we get
by (138) a skew lattice fulfilling the two distributive laws
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Proof: Writing
fa-as ’ Fa = 8' + a

we get
CAEbVB:" c(a' + bs + a),
(140,1) (°Ab)v(°_/\‘) w [c(s' + b)]s + c(s' + a)

= c(s's + bs + 8' + a) ;

[bva}Ac = (bs + a)(s' + ¢) ,

(140,2) (bye)(ayc) = bl(c + 8')8 + alc + s')

= (bs + a) (¢ + s8'),

Lemma 52: If W 1is a distributive lattice v, and 93
fulfil (131) and the dually corresponding relations

(1413 FFa = Fa,
F(anb) = Fa, Fb,

then L is tolerantly distributive.

Proof: We have also the dual relation to (132), which means:
(142) F(a_b) = F(a_Fb) = F(Fa Fb).

Now the relation
c,(ba) =c, [bv(cAa)]
wins the meaning
c ,F(fb a) = c__‘F[fby(c,,Fa)]

= ¢ F[(rb,c) (b Fa)] = c F(fb c) F(fb Fa)
= cﬂF(fbvc),,F(fbva);

and this indeed is fulfilled in conaequence of
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' F(foc)2 Fc 2 c;

I according to lemma 44 and the dual statements. -

At last we discuss some possibilities to construct functions

f,F in certain special cases of commutative W= V; din
these cases the second line of (125) will be fulfilled in the
special form (131).

Construction I: The lattice V may consist of those pairs
a = (A, Aa) of elements A, By... of a lattice V  which
fulfil the condition

(143) A A

N

1 27 {

and v may be a sublattice of the direct product of two

direct factors Vo.
Definition:
(144) fa = (A.‘, A1); Fa = (AZ, AZ).

Construction II. Again we take a lattice V_ = {A, B,... b,
and we form a direct product of three direct fastors Vo. We
define V as the sublattice of this direct product ef=thoss

consis%els as (A1, A, AB) which fulfil

it e o el it i e e e

(145) Ay S A, S A5
' Definition:
(146) fa = (A, A, A3); Fa = (A,, Ass AB).

In this case axiom (C) is valid, according to lemma 48,

———
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Construction III, including and generalising the constructions
I, II: Again we teke a direct product of direct factori ' VO;
the elements can also be denoted as functions a = A(k) of
an index k, the A(k) being elements of Voo In the set

M  of index values k any quasi order (as defined above)
may be given; and we consider now the sublattice of those
functions A(k) with

(147) A(k) g A(1) in each case k C1.

In the set M there may be defined two functions

¢ (k) = gk, d(k) = Pk  with values out of M  fulfilling
with respect to the mentioned quasi order the relations

(148) ?7k-;~k§k$¢’k-¢¢k.
Definition:

(£A)(k) = A(g k),

(FA)(k) = A(PK).

(149)

Sufficient for (C) is

(150) ¢ Pk <k < Pok;

and (150) is also necessary for (C), if V, has more than
one elenment,

The following example includes the constructions I,II:
k-1,2'ooo s B3

1 fgjin;

.{1“ k1 ek,
Pk "5 it 1 € k;

d,k_{aifksa.
nif Sk 3.
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Lemma 53: If V’ is a distributive lattice, then construction I

leads to a skew lattice W' fulfilling the distributive law (DzlL

It may have some methodical interest to give two different
proofs of this remarkable lemma,

At first we consider the simplest special case: Vo may be

the lattice V, of only two elements. Then W is the ordered
lattice of 3 elements:

1
2
0
We have
(151) £(0) = £(z) = 0; £(1) = 1,

F(1) = F(z) = 1; F(0) = O.
That this case fulfils the relation

(151,1) (nvb)Ac = (aAc)v(bAc)

(and the dual one), can be seen easily by direct verification.

At the same time we see that this is an ordered skew lattice,
corresponding to the symbol

(152) 2y 2n.

Now we proof lemma 53, using the fact, that every distridbutive

lattice is a sublattice of a direct product of direct factors Vg.

Therefore the w of our construction is a sublattice of

another w *

which may be described thus: We apply the construe=
tion I to a Boelean lattice ( = direct product of direct factors

V). »

_———\r%;‘__!ggl to apply construction I to a direct product W =
(1 (2)

w w means to apply it to each one of the direct factors
" "

direct product

’ and then forming the
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(153) w*" . WD e W@,

Therefore the validity of (151,1) in the case (152) means also
" l
that (151,1) is valid for W"  and them for W .

A second proof of lemma 53, to be represented now, does not

make use of the fact that each distributive lattice is a sublattice

of a Boolean one. (This fact naturally allows also another proof
of lemma 51).

We simply calculate, using again .,+ instead of Ao 8
(154) (a,b)yc = (Ay + By, Ay + B)(Cyy Cp)
(a,c) (b,c) = (A1C2 A1ca) + (B1CZ, Bzcz).

Remark: If a f,F -construction, applied to a skew lattice
with orthogonality, fulfils

(15‘*'1) ?: = F:,
then also
(154,2) ac = e,

The results of this paragraph show§ that we can get by the
f,F =construction a rich material of skew lattices fulfilling
the tolerant distributive law (Do) as well as the modular
axiom (M). But the skew lattices constructed in this manner
from commutative lattices are quite special ones in a certain
respect: Tho; all are superflat ones,

Therefore we shall proceed in the next paragraph to study
another construction leading to examples which are still flat
ones, but not super flat ones, The resulting new akew lattices
have been partly already discussed above, for after having been
detected these new examples showed themselves to be accessible
also independently of the construction method of the following
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paragraph, But in spite of this the following considerations

will lead us to some new aspects of the theory of skew lattices.

§ 12. At first the concept of skew lattices with orthogonality

may be discussed a little more thoroughly,

An orthogonality a ->a with

(155)

aAc = C A

exists in every lattice which cah be represented by a graph
symmetrical to an horizontal rectilinear line. For instance:

We define a as symmetrical to a .+ In the case of the free

lattice with two generating elements u,v

0= 1;
(156)

U= u, ¥= v,

we get thus:

But we can also use the fact that this free lattice with two
Vaxvz, s0 that the

orthogonality O =1 in V gives the orthogonality:

generating elements is a direct product
2

(157) SELER!
1

= V; V= U,

ei

In the general case of a skew lattice

w

possessing an
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orthogonality it may be Aa an|involuMorial automorphism:

Aha = Aa;

(158) A(a,0) = Aa,Ab,
Ala,b) = Aa Ab;
Aa = Aa.

Such an aat@morphism exists especially in the case that W
is a direct product with two isomorphic direct factors.

Lemma 54: If (158) is fulfilled, we get a new orthogonality

a =%
by the definition |

(159) s = Aa.

Proof: We have

~x _—
a = Aa = AAl = Ada = A

(160) £;¢ = A(3,©) = A(co,2) = Ao AR = &, ‘,

Now any distributive lattice V with operations ~, o and '
with orthogonality may be given, and we make the '

Definition:

ab = a(b + 2) = ab + aa,

(161) - -
ba=ab+ am (a+a)de+a)

Lemma 55: With these definitions (161) the elements of V
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form a skew lattice w.

Proof:; Indeed we have at first:

(nAb)lc = (nAb)c + (aAb)(::%')
(162) = abc + aac + (ab + aa)(ab + a)
= abc + aac + abb + aab + aab + aa
= abc + abb + a:;
and

aA(bAc) = a(b,c) + as

(163)

= abc + abb + aa.

Therefore the compositions A, v are indeed associative ones,
Secondly we see, that replacing Nn,v by A,V we loose no

case of weak inclusion, and we win no case of strong inclusions:

J aﬂb-a—)aAb-a;
(164)

I bva-b—) bua-b..

For ab = a gives aAb = a4+ aa = a; and

ba = ab + a=b gives f4a = b.

Lemma 56: W fulfils all axioms ¢ (a,bycyece) =
A (8,0,8,+4.) which are fulfilled by W,.

We shall see later that in all these cases w can be constructed
as a sub skew lattice of a direct product of direct factors l“.



Then lemma 56 is an obvious consequence. But we prefer to
show here at first by direct calculation that lemma 56 is correct.
According to § 4 we have to prove the following statements:

W is flat. For from (163) we have ab,a=ab,

¥_ fulfils (M). If x is twofold weakly included in

Y+ we have Xy + XX = X, YX 4 ¥ = Y.

Then
[ x (c,y) = Te,y)x + (c,y)
(165) = (cy + ¢)x + c(y + ¢)
= 86X + cy + 03;
(166 (xyoly = (xyody + (xyo)(3,D)

= (cx + ¢)y + (cx + ¢) @(x + ¢)

= CX + Cy + CC.

W fulfils (D*)"._ We have

a,(be) = aflbe) + 7l
= alch + ¢ + ®);
(a,b), (a,c) = (c,a)(a,b) + (a,0)

= (ac + c)a(b + a) + alc + &)
-{(c+s)(b+:)+c+:]

= n{gb +cC +;1.

*
W fulfils H . We have, using also (163):

(167) (b,e),a = (bc)[a + (5,5)]
= (% +c)a+ (b +e)]
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Al
(6P s (cb + c)a + c(vd + @);
M\.d,
(v 0), (ac)ra = (bvo)(avc)[a + (3,.:)] + (b c)(e,b)
(168) = (cb + c)(ca + c)[a + cla + c)] +(0b + ¢)o(b + o)

= (cab + c)]a ¢ c(a + c)] + o(edd + ¢)
s (cb + c)a ¢+ c(cab + @ + c(db + ¢)
= (cb +¢) a ¢+ c(dd + ¢). o

*
W fulfils C . We have according to (163):

(b,0),8,(a0) = (byc)a[(aye) + 3]+ (b,c)(E, D)

(169) = (cb + c)n[?a +C 4+ :] + (cb + e)e(b + ¢)

= .(Eb[? + :] +¢) + o(bh + ¢)

= (cb + c)a + c(bd + ¢),

equal too to the expression (167).

W fulfils (112). From (163) we have:

(170) { (cya) (b a)(c b)
(e 0 [0, [(e,0) + BB + G®)] .
Here we have:

(o a) [(e,b) + (&)
(171) = (ab + a)[Bc + b + &b + u)]

= :ﬁ+n[§c+b+:].



o

- 52 -

L At the other hand:
(172) (eyn) (ab) (o b) ) E
. (cvn)[(avb) [("vb) + (FAO)] + (:AE)-] |
with
(a ) [(e,b) + (5]

‘ -(Fa+b)[§c¢b+5(:+b)1
; (#713) = bac + bba + ban + b
b = ba(c + b + a) + b,

Therefore (170) equals:
(ac + a) [:b + a[ﬁc + b+ :]+ a(c + l)]
(174) -:c[b§n+sl+a[¥c+b+=‘]
e [b+TleafBcen+as

and (172) esquals

(:c+a)[§¢(c+b+=)+b¢:('c'+nﬂ
(175) -:c[§a+b+3+a]¢|[§(c+b+:)+b+:]
-:c[b+?]¢a[5c+b+:].

U S N S

Applied to the case (156) our definition (161) gives the skew
latticefd I,* . Therefore our proof of lemma 56 gives also a
new proof of the discussed properties of Wy

At last we mention still another possidbility to define in a

=
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distributive lattice with orthogonality a certain semi group.

Let us consider

(176) a+tbsadb+ab+ an.
ta

Lemma 57: This composition (176) is an associative one

Proof: At first we see that

as2b=(a+a)bsa)bsa)
(177) = a(d + a) + a(b + a)

sasbesagsb,

Therefore
(178) asbeaasn,
And:
(a £ b)(a ¢+ b)
(179) s (ab + ab + aa)(adb + ab + ad)

= abb + abb + aa.
Now we have

(180) as(dsec)aa(dsc)+aldgs)+an
-:(§c+b:+b§)+a(§'+bc+b§)+a:;

(agd) scm(asBlo+ (aghdlo

(181) + abb + abb + aa

= abe ¢+ e
+ ob% + abo

+ abh + abb + as.

|
|
|



.
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From (181) we have also

(182) atasxmasxsa

Proof: both sides of (182) equal

(183) (a + 2)x + aa.
Therefore
(184) asasbebmasbsagsh;

that means: The''singular" elements a 3 a form a sub semi group.

As one sees from (176) we have

a4+ asan;

(185)

a + a.

From the expression (183), equal to (182), we learn also that

(186) a+a+an=a,

Therefore this semigroup is not an HSL, but a generalisgtion
thereof, But the sub semi group of the singular elements

asa is an HSL.

A simple calculation shows that the definition (176) may also
be written thus:

(187) as+b s (ad)(ab).

The constructions of this paragraph can ve generalized in such
a manner that instead of a.distributive lattice a superflat doubly
distributive skew lattice is used. But then the calculations
become so awfully complicated that I prefer to omit them here.
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CHAPTER VI. DIRECT PRODUCTS OF
ORDERED SKEW LATTICES

§ 13. In the theory of lattices we have the well known

Lemma 58: Each distributive lattice is a sublattice of a
Boolean one.

It is the chief aim of this chapter to explore possibilities
of a non commutative generalisation of this lemma. This surely is
quite an hard problem. Being still far from any solution of it,

I can give here only some pgﬁpnratury remarks, But these already
seem to show that this indeed is an highly interesting mathematical !
problem.

In order to get at least a well defined question, let us make
the following

Definition: A skew lattice W__ belongs to the class D,
means that it is a sub skew lattice of a direct product of ordered
skew lattices.

A skew lattice W__ belongs to the class D', means that

N___has the structure of a certain system of congruence classes

in a skew lattice belonging to class D.

From general considerations (P. Jordan, Abhandl. Math. Sem.
Hamburg ) it is probable that the class D'
can be characterised by some axioms valid in each skew lattice
of type D'. How are these axioms to be found out? Surely the
tolerant distributive law (Do) and the modular law (M)
belong to them; but are they already sufficient?
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Another question arises: Are the classes D and D! idens |
tical, or can we find examples of skew lattices belonging to
D', but not to b2

In the commutative case the answer is contained in lemma
| 58; we formulate:

Lemma 59: If V is a lattice of congruence classes in

—— & lattice V  _which is a sub lattice of a Boolean one, then
V__is also equivalent to a sub lattice of

!“ dirt o dinech
The proof of this lemma is not interesting in the frame of

lattice theory, because it is only a special case of lemma,

But we give here a proof which is independent of lemma 58.

The elements of Vo may be represented as functions

‘ " f(x),g(x)yees of x = 1,2,... ,m with values f = O or 1,
% We have
{
1 g8 = 1g;
(188)

t, g=tf + g - fg.

Two special elements f,g may be congruent, and we consider
-the system of congruences generated by the congruence f = g.

The two functions h1(x), ha(x), belonging to V , may

| have the property that h.,(xo) +h2(xo) has the co(m,m
- f.(xo) *8("0)’ Then we have h, g h,. Sequ
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For if
(h.‘hha)(xo) = 0,
(h“"ha) (xo) s 1

has the cozﬂgonco

2 (fﬁ‘) (xo) = O,
(fvc)(xo) = 1,

(189)

(190)

then for all values of x we have:

{ t.8.h, = £.g8.h,,

f“gyh1 = “thZ'

(191)

Now the congruence f=g

gives

f.h, = £ h,,
(192) .{' ~ e
and h ., =h follows frm the

1 2

Remark: In any distributive lattice from

a.c=b.c and a,¢c=b,c we have a = b,
Proof: We have

(193) (ab),(ac) = a (bc)=a_(a,c)

|
|
f
Il
i
i
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and by permutation of a,b in this relation we get a = Db,

Therefore: The congruence class of any h1(x) is
determined by the values h1(x') for these ' x' in which
£(x') = g(x').

Lemma 60: If a skew lattice W with two generating elements
a,b belongs to class D', then it is doubly distributive.

If a flat one, it is also superflat.

Proof: Inany W of class D! every HN-axiom

(19‘*) (P ("b) = W(c"b)

valid in V

2 is fulfilled, as we know.

Any HN-axiom

( ) (XyY9Zyeoo) = (x, S
195 ¢ XoYe2 Y X,¥y2 ‘;"(4"5)

valid in Va. is then fulfilled.in W o For insertingYany
special elements samitff®) w» = x(a,b),y = y(a,b),cc., we
get

(196) ¢ (x(a,b)yy(a,b)yz(a,b),.0.) =gp(ayd),

and the validity of (195) for these x,y,%Z,... is given by
one of the characterised axioms (194).

Therefore W is doubly distributive, so that (D.,) and
(Da) are fulfilled.
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In the axiom
(197) X+y+2my +X 43
of a superflat W we again 1n-or£:
(198) x(a;b) + y(a,b) + z(a,b) = y(a,b) + x(a,b) + z(a,d),

getting a relation ¢ (a,b) = Vv (a,b), fulfilled in the case
of an additive halfnest. But ig the case of a multiplicative halfs
nest, and a flat w, each one of the elements x,y,z reduces

itself to one of the elements a,b,a + b, b + a; and then again
(198) is fulfilled.

Knowing lemma 60, we immediately can write down the elements
of the free skew lattice of class D' with two generating
elenents: Thus we come to our skew lattice '18 studied above.

Lemma 61: If the class D (or the class D') of skew lattices

can be characterised by axioms which are HN-axioms, then the
following consequence is given:

Lemma 62 (hypothetical): Each HSL is a sub system (or
equivalent to a system of congruence classes in a sub system)

of a direct product of ordered skew lattices.

We make a little test concerning this hypothotiénl lemma 62:

The following statement - an extremely special case of lemma 62 -
at least can be proved:

Lemma 63: The free flat HSL with n generating elements

is a sudb system of the direct product of direct factors

@ (12).
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Proof: We take the direct product of % n(n + 1) direct
factors Wh. Any one of the generating elements L may be
represented by a series of %n(n + 1) elements out of '#;

this series may divided into shorter series containing
l. l-1 geeee 1 Olol.nt!- w. 'rit.:

~

' (a) (n) (n) (n=1) (a-1)
(199) .k = (Wk1 a 'kZ B too'kn ‘Wk.‘ ot-'kn-1 Iooo
(2) (2) (1)
,'m "2 l"u )
with
'(:z - u; i
(200) j
w(:; v if 3k |
'(1) a0 in all other cases.

For instance we have,if n = k.

a1(u000luoo]u0lu)
nz(OnOOIOuO(vu!O)
nj(OOnO(vvuloolo)

au(vvvn|000|00io) .
y)

Or for n = 5:
°, = (w0000 1u000! u00| uo( u)
’ = (0u000!0u0o!ouoivo|0)
a8y = (00u00 {00u0 ! vvu| 00:{0)
., = (000u0{vvvu000100(0)

ag = (vvvvu {00001000)00{0). ;
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All elements generated by these a belong to a multiplicas
tive HSL Dbecause Oy,u,v form a multiplicative HSL ~
in  W,. Additively these a,_  generate a flat v-HSL with
elements

a= lka + .k‘+ cee + .km'
b-ll"+ l11+ see +I15'

which are different: & 4 b, exactly if the corresponding
elements of a free additive flat HSL are different,
according to our discussion above. For in

(201)

(202)  aw (2030, 2B (a1 a0 15000y
we see from the elements z(:2 what elements LW are

contained in the sum (203) for a. If L bolon;-‘to them, |
then z(:)- u; if nmot, thenm z(ﬁ)- 0. At the other hand, |
if ap and aq occur in the sum a, then we can see from “
(202))vothcr . stands left and . right, or vice versa.

If »p>q, and a at the left side of a_, then Z(p)- u;

otherwise Z(z)- 5. ! :

It would be nice if we could now generalise lemma 63
so that for all flat HSL it would be shown that representation
as sub system of direct products of ordered HSL nmust be
possible - by a further step similar tc lemma 59. But I cannot
yet say whether this generalisation is possible. -

From the last considerations and results we gather the
impression, that the tolerant distributive law (no) alone is
to weak im order to characterise - together with(M) - the
class D or D!, Therefore the question arises whether
there exist other distributive laws valid too in all ordered
skew latticeS§.
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A contribution to answering this question is

Lemma 64: The following relations (each one of these four
lines) are conservative FHN-axioms giving common distributivity
in the commutative case; and they are fulfilled in every ordered
skow lattice:

* ca ¢+ c(a + b) ¢ ob = ca + cb,
(204) (D,")
(b + c)(ba + ¢)(a +¢c) = (b +c)(a+¢);

(205) (na*) ac + (a + b)c + bc = ac + be,
(c + b)(c + ba)(c + a) = (¢ + b)(c + a).

It is not neceassary to say anything about the proof of this
lemma; it:borroctnoll is obvious as soon as it has been
formulated.

But the consequences of this statement are not yet known.

§ 14, The conviction that it might be possible to reduce
distributive skew lattices - if properly defined axiomatically -
to direct products of suitably chosea ordered skew lattices
gains strong encouragement by a fact detected by W. Bige:

Lemma 62: Each sksw lattice comnstructed from a distributive
lattice according to (461 ), is_a sub system of a direct product

of direct factors !“.

Proof (W. Bige): We start

n
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from a lattice V. Let h Dbe a system of exactly two
congruence classes in V ; and B the set of all these

h . We can describe h as a function of the elements x
of V, possessing the values 1 and O according to the
two congruence classes: From h(x) = h(y) = 1, h(s) = h(t) = O
we have

h(xy) = h(x + y) = h(z + x) = 1,

(206)
h(zt) = h(z + t) = h(zx) = O,

With -2 (x) we denote another function of x, having as
values sets of elements h of H, ia such a manner that
g (x) is the set of those h which fulfil h(x) = 1.

We ask now under which condition thf:ubut- ? of H form
a lattice (if composed as subsets of H by Ao ) which shows
isomorphism to v.

Lemma 66: This isomorphism is equivalent with distributivity
in V.

For at first it is trivial that this lattice of the ¢
is distributive. But at the other hand distributivity im V
is also a sufficient condition. Two elements a*b of V
have cp(a) 4 @(b); that means: It exists surely an 1
with h(a) e h(b). One of the elements a,b - say b -
may not be included in the other one. We take from V two
subsets of elements:

v, ={x with xga},

v _{x with x;b\».
1 =

(207)
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These Vo, V1 are an example of pairs 06,01 of

subsets of elements of V with the following properties:

6 ) UyaUy = empty,
y) y<x €U, = ye U,
yax €U, % ye L
4
5) Upe Uy S Up5 U+ U <UL

Here s+ may denote the compositions in the lattice
V; we prefer here to use N, for the combinations of
sets,

Assuming V as finite (or otherwise using Zorn's lemma)
we can find a maximal pair U;, U1; that means that from
U320, U, ‘20U, and validity of o) -§) also for

U;, U{, it follows that U; = U;; U{ = U1.

In the case of such a maximal pair U, U we have

o1—1

(208) Uy Uy = Ve

For if the element © of v would not be contained in

ub\l“ﬁ’ then we have the following consequences: Let o

be the set of those elements of V which include any element

of ¢. U

4+ We have TUj 2 U, ad T3 +U1, because

c€Ul.  Thepair U, U fulfile o), y), §), ana

o
therefore uonu; cannot be empty.
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From )) we have then that U,neeUj too cannot be empty;
and correspondingly U1,\(c + Uo) cannot be empty. If now

u € Uo’ I1eU1 with ou.‘euo, ¢+ u, eU1. and
according to y) the element g, belongs to Uo, we have

from § ) a contradiction to f3)3

(209) uu, +cu, = (uo + c)u1

belongs to U as well as to U,. Therefore (208) 4is correct.
From (208) at last we see: By

(210) h(U ) = 0, h(U,) = 1 ’.

an element h of H with h(a) g h(b) is defined. 1
Therefore the proof of lemma 66 is completed. |

Continuing now the proof of lemma 65 we denote by~ &
the replasement of a subset by its complementary subset. The general
case of any orthogonsl correspondence in a lattice or skew

lattice denoted in our former discussioas by‘: s Ray now be |
denoted by Z ; by definition we have

(211) 22(x) = x; Z(x + y) = 2(y). 2(x).

Such a Z may exist in our lattice V; we have them,
acoording to our former considerations, a certain permutation
® in H of the order 2 so that

(212) qz.?;..

This means that o (2(x)) results if one performs
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the permutation 72 in @ (X) and then takes the complementary
set, The permutation 71 obviously is the transformation e

(213) h —> hZ.

Lemma 67: Every distributive lattice with orthogonal correspoadence
Z can be represented as a sub system of a direct product

of direct factors

(214) u v
0
with
(215) Z2(u) = u, 2Z(v) = v, z(0) = 1.

With the proof of this lemma 67 obviously also the proof of lemma
65 will be completed.

With respect to 7t the set H consists of realms of
transitivity T containing one or two elements. The lattice
v is isomorphic to the lattice of the P which is a
sublattice of the lattice P(H) of the subsets of H; and
P(E) is a direct product of direct factors P(T) Dbelonging
to the different T. In the case of a T with one element, |
P(T) is equivalent to V, with Z(o) = 1. If T has '
two elements, P(T) 1is equivaleant to (214), (215). - This

completes our proof.
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CHAPTER VII. SUPPLEMENTS.

e
g e

{
This chapter contains a series of additional considerations, !
s
partly ascarcely connected, but contributing to the theory ,

of akew laitices. Some of these additions here seem to show
new promising paths of research, not yet explored sufficiently.

- mmewmie -

1) Definition. A,-HSL with the property

(216) a,b,a =b,a

may be called an antiflat one.

Lemma: If a skew lattice W_is multiplicatively antiflat,
then it must be flat additively.

Proof: Look at
—

The dotted arrow is a consequence of the other arrowg.

‘ 2) The free HSL with n generating elements is fimite.

This has been shown by T.A. Green and D, Rees, Proc.Camb.Phil.
! Soc. QQ, 35, 1952.

They proved a theorem containing this lemma as a special
case. Their proof, reduced to the case interesting us, will be
reported in the following.

PRy S
- 3
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Independently W, Boge stated and proved this theoream. His

e e o M

unpublished proof is not so simple as that of Green and Rees,
but it contains statements which have a more general meaning
and therefore may be shortly indicated here. They are apt

to give important additions to the theory of skew lattices.

J If two special elements a,b fulfil the relation
(217) badb = b,

this is equivalent to the fact that there exist u,v with the
property

(218) uav = b,
Proof: From (218) we get

bav = b and bab = babav = bav = b,

The relation (217) between a and b is a reflexive
and transitive one; writing a’b we have

(219) ajb,§bjc ==y afc.
i Proof: Froam bab = b; cbc = ¢ we get

C = uav with u=c¢ch, v =« be,

If a|/b and Dbja, then we have an equivalence relation
which may be denoted by a~b. The equivalence class to which

an element a Dbelongs may be denoted by 2.
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Such an equivalence class % is obvbusly also a sub

HSL, and we know already from considerations above that
it is the direct product of an halfnest and an antihalfnest.
But more is to be said:

Lemma : The equivalence classes a fors also a system of
congruence classes:

(220) ana'y boub! q ab ~a'buab’,

Proof: From a[ﬁ or bab =b we have, putting

u = beb, v = be:

u.ac. v = b.eb,a.cb, ¢
= b, ¢cb. a. ¢cbab, ¢
= b, cba., bc = be, bo = be;
therefore aclbc. Correspondingly (in these considerations

strong and weak inclusion play symmetrical r8les!) we have
ca ‘Cb .

Qur lemma 5 is the specialisation of this lemma for the flat

case.

Lemma : The HSL of these congruence classes Aji} called
B/~ is_commutative; and each commutative HSL of
congruence classes in the original HSL is a HSL of

gongruence classes in H/~.

Proof: We have

(221) XY, YyXo Xy ®» XY; yx|xy.
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At the other hand xy'yx,
And by the congruence xy z

therefore

yx each halfnest and each

XY yx.

antihalfnest gives only one congruance class.

Before continuing we indicate some considerations showing
what high interest these ideas of Bige's are meriting.

3) In words we may read

ajb

thus: "

b _is superweakly

inoluded ia a " in the additive case, and "

superweakly included in b

Our graphical representation of types of inclusion may be

completed thus:

" in the multiplicative case,

strong ba=a bva = b
(222) weak ab=b ab=a
superweak !Aba‘ =albabds=>b

We have in the general case the consequence-relations

(223)

-

«

L

’

In the flat case we have additionally

-

(224)
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so that the whole picture in the flat case is this:

1

A
(225) }l
VN

4) A new construction of HSL's from already givea
HSL's arises in the following manner: Let H be a
HSL fulfilling the axiom (15). Then we make the definition

- (226) axb = aba,

This lukqs{fron H a new HSL, which is a flat one:

(a%b)*c = (as¢b)c(anb)
(227) = abac aba = abcba,

a X(b¥c) = abcba;
aaxb-xa = aba = adb.

The idempotency

(228) aka = asa = a

(as well as the associative law) is even then fulfilled, if
our starting point is not a HSL, but a more general semi
group with 2 =a , a8 we studied already above, in (186).

The associative combination & +b defined in (176) has
not the property (15). But in spite of this fact even from the
composition + we get by (226) an HSL., For in this case wehave
from (182):



»
I+
o
I+
»
I+
o
I+
»
i+
o
I+
| ]

(229)

i+

a+ta+a+b+o+b =a+a+b+o4+b;

a+b+c +b s+ ana

-+
.

+h+c+b,

Returning to the case of an HSL as the starting point of our
construction, we get also

Lemma : If in any skew lattice W__we replace the compos
sition A by the composition % according to (226), we get

a new skew lattice.

%
Proof: Replacing , Dby et ‘we loose no case of weak inclusion,

and we win no new case of strong inclusion:

ab = a -=)>a4fb = a;

a¥%b = b =xi) ab = b,

(230)

The new classes of examples which can be constructed in this
manner give an extensive new material for the study of the skew
lattices. -

According to Green and Rees, also the semi groups with 13 =X

have the property that the free one generated by a finite number
of elements is finite.

S5) The proof that the free HSL with n generating
elements is finite has been given by Boge in the continuation
of his considerations presented above. Instead of following further
his line of discussion we prefer only to give a sketch of the
direct approach to the problem given by Green and Rees.
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The element x may be given by a product X = o L cocl
A 2 +*

of elements belonging to the generating elements 8y 89000y a-
This product may be called a word. Two words certainly correspond
to the same element x if they can be written as AZB and

AZ2B:

(231) AZB ~ A22ZB.

If it is not possibdle to change the word X by a finite number

of steps according to (231) into the word Y, then Y represents

an element S x. With S(x) = S(X) we denote the set of

generating elements used in any word X representing x;

obviously S(x) is uniquely determined by the element x .
fhe word X may have S(X) = B0 8500098 .

We write with other words Xx¥,a,B:

(232) XX = AX*B,
s0 that
(233) S(A) = S(B) = s(x),

and so that A,B  have the possible minimum lengths (= number
of factors in the word).

Leama : Then x(AX*B) a x(AB);

Proof: 1f X afrA, then

(234) X = x1lf

with a, belonging to s(]p; therefore
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j ',
! (235) X = Yaf Y a;

and the word XY' is equivalent to (means the same element as)
the word

(236) X, = Ya ¥

which according to (234) is shorter than X itself,

Therefore in (232) the word A is equivalent to a certain
i word XZ:

(237) x(A) = x(X2).

Now we see: The elements equivalent to words AZ*B form
a group. Surely they form a semi group; and if X4',Y* are
given elements, we can find z* so that

(238) AX*B, AZ* B~ AY' B .

i For at first there exists w so that
!
| -
i (239) XW~ AY B,
. and especially

* * *
(240) W= XZY B = AX BZY B.
In the same manner we can solve
| (241) AZ*B, AX*B~aAY"B,

s0 that in the semi group of elements AY* B also division,
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right and left, is possible.

) Any HSL Dbeing a group contains only one element. Therefore

(242) x(Ax*B) = x(AB).

5

From these considerations we see that the number of elements
B(n) in the free HSL with n generating elements

is
|
i 2 n
| Ba) = > {, ) cto;
; (243) k = 1 :
% cm) = o2 fotm - 1] % (1) w1y
‘ (m-1 :
% c(n) = u2(m - 1@ 28,22 ). |
i One gets f
% i |
| (244) B(1) = 1; B(2) = 6; B(3) = 159; B(4) = 332380.

As a consequence of the theorem of Green-Rees-Bige we
have also the following

Lemma : The free doubly distributive skew lattice with
o generating elements is finite.

| But the number of its elements, certainly < B(B(n)), must be
; enormous already in the case n = 2,
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6) There are possibilities to construct special skew lattices

from matrix skew rings. These possibilities are interesting,
especially because they give us skew lattices with elements which
are functions of continuous parameters. New types of skew lattices
are to boround this way.

At first we discuss certain rings of matrices. In suck a ring
the axiom

(245) Xyz = xzy

may be fulfilled. The general case of matrix rings with (245)
is not yet known; but there exist examples which are not commutative.

The more tolerant axiom
(246) xyzx + yxay - xzy2 + yzxz
is valid in all rings fulfilling (245); and also in rings fulfilling
(247) Xyz = yxz

instead of (245).

Other interesting generalisations are defined by the
following axioms:

(248) XYZ + YIX + IXY ® XLy + ZYX + yXZ;

(249) xyzt = xzyt.

But these cases (248), (249) will not yet be discussed here further.
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In a matrix ring R with (246) we consider the idempotent

slements x = Xx, ’2 = Y. For these we define:

(250) Xpy = XY
Xysx+y-yx.

Tt _set of idempotents in R form a skew lattice according

to (2 20) .

Proof: From (246) we get now:
(251) XyX + yXy m Xy + yX;

and therefore X,y and X,y again are idempotents:
Multiplying (251) with y we get

(252) XYXy + YXy = Xy + yxy;

Therefore (xy)2 = xy; and

(253) (x,,y)2 = (x + y)2 + (yx)2 - (yx + yxy + xyx + yx)

=X +y+xy=(yxy+ xyx) sx+y-yx

Associativity of the compositiomn  is shown by

(25%) X,y £ = X+ Y +2Z-JX=-1IX =8y +8yX.

And we have
x(y x) = x(y + x - xy) = x;

(255)

Xy,X = Xy 4+ X - Xy = X,
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Therefore this indeed is a skew lattice; obviously the direct

proof of idempotency was not necessary.

Our new skew lattice is modular.

Proof: Twofold wesk inclusion of x in y  means:

(256) Xy=X; Xy=xs+y-ysy
or
(257) Xy = yx = X,

This has indeed the consequence

(258) (x,2)y = x 2y,
or
(259) (x + 2 = 2X)y = X + 2y - zZyX.

This skew lattice fulfils the tolerant distributive law:

(

c[ivcbl = c[i + ¢6b - cba] = c[ivb];
(260) (b,c)a,c = (b,cla + ¢ - c(byc)a
= (b+c-cbla4c(bs+c = cba

= ba ¢4 Cc - cha = bavc.

In the more special case (245) this skew lattice fulfils
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(261) X,y,X = Xy,

It is therefore an example of the antiflat lattices discussed
above, according to (216).

Proof: From (254) we have
(262) X,y X =X +Yy = yX = Xy + X¥X,
and with (245) this gives
(263) X, J,X =X +y-yx=xy.

In this case (245) also another construction is possible:

xAy = XYy,
(264)

xvy & X +Y - XY,
We then have

x(y,x) = x(y + x = yx) = Xy + X - XyX = X;
(265)

Xy,X ® Xy + X - XyX = X

This other skew lattice too is modular.

Proof: In this case x is exactly then twofold weakly
included in y, if xy = x. We have then (x,2)y = x 2y
froa

(266) (x + 2 - x2)y = x ¢+ 2y - X2Y.
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; Again the tolerant distributive law is valid:

c[nvcb] m ca 4+ cb - cach = c[i +b - aﬁ];
(267) (bclac = (b,c)a + ¢ - (b,c)ac
= (b+c-bcla+o=-(b+0c-bclac
= ba + ¢ - bac = ba c.

‘ This skew lattice is a flat one - other than that defined
by (250), (245): For we get from (262) - a relation obviously
) still valid - now the consequence

(268) X y,Xx =y X

At last let us assume the existerce of an element £ with :
the property l

' (269) ug= u

. for all elements (not only the idempotents) of R. In this
case we can make a curious application of the f,F -construction:

(270) fx = Fx = $x.

Here Fx and fx are the same function of X.

Indeed we have

ffx = fx = FFx = Fx = £ x;

(271) F(x,y) = Fx ,Fy =¢ xy;

. - P . o e i R o 2 Wit B

f(x,y) = fx fy = §x + gy - £ xy;

fxvx = X; xkFx =z Xo
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The new skew lattice, resulting from the f,F -construction,

has f
xAy = x" :
(272)
xy=y +4 85X =&Y,
Appendix .

It xz s x and 12 =y, then from (248) it follows

that also g = Xy=s 52.

Proof: From (248) we havs for 2z = xy:

(273) 2XyXy + YXyX m Xy + yXYy + XyX;

from there:
2Xyxy + YXyXy = Xy + yXy + Xyxy

or
(274) XyXy + yXYXy s Xy + yXy.
Therefore by permutation of x and y and subtraction:
(275) XyXy - yXyX = Xy - JX .+
Adding (274) and (275) we get:
(276) Xyxy = Xxy.
Inserting (276) in (2?3) we get:

(277) Xy + yX = yXy + XYX.
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Therefore: Also x + y - Xy becomes idempotent, in consequence
Ml of (248), if x> = x, y° = y.

Another consequence of (248): Replacing x by xyx we
get:

(278) - YyZyXy = YXYZY.

7) Another example of skew lattices: The right ideals of a
semi simple skew ring with minimal chain condition form s skew
lattice with respect to addition and multiplication.

8) Taking any constan® element a we dedine a product
of X and y as xay. This gives a semi group with the

3

2
property X7 = X .

9) We study a system of 4 elements u, v, X, y with the

composition table

(279)

VI RV

<|m. </l
ILIIRIE

< % < ¢
< [%i<gic]|e

“«< |

meaning for instance that uv = u.

The following permutation A of the elements obviously

is an automorphism:




/
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) A RES )
’ (280) vyuyx)/;

therefore in order to ptove that (279) is associative, it suffices
{ to prove the case a(bc) = (ab)c with a = u: Indeed

i u(bo) = (ub)e is to be verified at once for the cases

b = u v, X, yo Therefore (279) defines an HSL.

<2

l Now we use (279) as definition of a,b, and we construct
avb in the folldwing manner. The permutation

[

| uvx y)

}’ (281) Palyyvu

‘ !
’ has the property :
! ;
: . We define f
| ‘
; -1, -1

. (283) a,b = P(Fb,P ‘),

% s® that we have

i

: (284) P(a,b) = Pb,Pa.

1
] The definition (283) makes from the HSL _ (279) a skew
| lattioce.

!

Proof: The composition (283) is associative:

(a,9), ¢ = B[P, 5" (a,0))
(285) -1
= P(P" 'c,P b,P 'a)

* = ‘v(b\lc).

P
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And (2) beccmes equivalent to

3 Ps,P(a,b) = Pa,
,‘ (286) ]

l P~ AAP'1(aAb) = P a.

In consequence of (282) these two relations are equivalent;

and we see that im our example the first line of (286) indeed
is fulfilled.

t

!

5 We have here a generalisation of the concept of orthogonality
a as discussed above. Orthogonality is the special case with

l

A = identical permutation.

The table for the additive composition in the case of our

example here obviously is:

U Vv x
: wulul v 1 u
R (287)
" viu
| ,
x|u
y |u .
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